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Lyapunov exponents in disordered chaotic systems: Avoided crossing and level statistics
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The behavior of the Lyapunov exponersEs) of a disordered system consisting of mutually coupled
chaotic maps with different parameters is studied. The LEs are demonstrated to exhibit avoided crossing and
level repulsion, qualitatively similar to the behavior of energy levels in quantum chaos. Recent results for the
coupling dependence of the LEs of two coupled chaotic systems are used to explain the phenomenon and to
derive an approximate expression for the distribution functions of LE spacings. The depletion of the level
spacing distribution is shown to be exponentially strong at small values. The results are interpreted in terms of
the random matrix theory.
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The Lyapunov exponerltE), which measures the insta- second result concerns the statistics of “level spacings”: we
bility of dynamical trajectories, is a standard tool in the stud-demonstrate that the distribution of the differences between
ies of chaotic systemisl]. The positiveness of the maximal the LEs has an exponentially strong depletion at small dif-
LE serves as the criterion for chaos; the inverse LE is derences, in contrast to the Wign@nd similay distributions
characteristic time of mixing and of correlation decay. For anin the random matrix theory. We give a theoretical explana-
N-dimensional chaotic Systerm LEs Corresponding to dif- tion for this depletion, based on the properties of LEs of two
ferent directions in the phase space can be defined. coupled chaotic systems demonstrating extremely strong

There are different methods to calculate LEs numerically‘level repulsion” [13,14. In order to demonstrate qualita-
if the equations of motion are known; in experiments one Caﬁ|ve Un|Versal|ty of the effects of avoided crossing and level
use special techniques of data analysis to estimate at ledgpulsion, we consider below different types of systems,
some |argest LEs from the observed c{ﬁh Several impor- Hamiltonian and diSSipatiVe ones, and different COUp|ingS,
tant physical properties can be expressed in terms of LEg]lobal- and nearest-neighbor-type.

e.g., the Lyapunov dimensiof8] and the synchronization

threshold[4,5]. Whereas in chaos the largest LE is most A, Numerical evidence for avoided crossing and level
important, in studies of disordered latticgse Anderson lo- repulsion

calization probleni6-8]) the smallest, in absolute value, LE
of the transfer matrix is important; it gives the inverse local-
ization length.

LEs can be considered as some kind of eigenvalues char- s
acterizing chaotic motion. Thus, it appears to be natural tol;(t+1)=1;(t)+K; sing;(t) + W > sir[ 6;(t) — o;(H)],

Our basic model is a system bf coupled standard maps
that are, in general, different;

perceive an analogy to other eigenproblems in physics, in i}

particular, to eigenfrequencies of linear oscillator systems (18
and to energy eigenvalues of quantum systems. This analogy

has been shown to work for spatially extended chaotic sys- gi(t+1)=6;()+1;(t+1), i=1,...N.  (1b

tems. There the LEs can in the thermodynamic limit be de-
scribed with the spectral densif9,10], similar to the usual Herel,(t) and 6;(t) are the 2r-periodic state variables at
description of eigenmodes of lattices. In this paper we usaitei and timet, ande serves as the coupling parameter. The
the analogy with energy levels to investigate the propertiegoupling can be global if the sum on the right-hand side is
of LEs in disordered chaotic systems. It has to be emphaever all elements in the ensemble, in this cadgg}=N
sized, however, that while energy levels and eigenfrequen—1. In the case of local coupling in a one-dimensional pe-
cies are directly observable quantities, LEs are defined in #odic lattice, the sum is over nearest neighbors Afd}
theoretical concept and can at most be measured in an indi=2. The parameters; of all systems are, in general, differ-
rect way. ent, their random distribution defines disorder in the model.
A typical model here is a lattice or an ensemble ofBelow we take all parameten; in the region of strong
coupled chaotic systems whose parameters are randomly dishaos,K;>7. The standard map used in Ed) is the basic
tributed. Such systems, as has been showflinlZ, can  model of Hamiltonian chaogl5], it describes, in particular,
demonstrate rather unusual properties, e.g., disorde& periodically kicked rotator.
enhanced synchronization. Here we concentrate on the prop- The LEs are calculated with standard methpdlsas the
erties of LEs in disordered systems. The main observation ipgarithms of the eigenvalues of the limiting matrix
that these properties resemble those of energy levels in dis-

ordered quantum systems, but are quantitatively different. In T
particular, we demonstrate that the LEs exhibit “avoided V= lim [PIP]¥2T, P=]] J), (2)
crossing” when drawn in dependence on a parameter. The T t=1
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FIG. 1. Lyapunov exponents; (i=1,...,6) vsparameterr 0-00 0 S L0 ' 2IO ' 3.0
(see textfor six standard maps with parametéts 7). (a) Without ) ’ z ) )
coupling crossings of LEs are possib{b) Crossings are avoided
When nearest-neighbor Coup”ng Wlth Coupling parameteﬂ_o_g FIG. 2. Numerica“y estimated Cumulative diStl’ibution fUnCtiOnS
is applied. The dashed lines correspond to avoided crossings of onfj3(2) for the normalizedin such a way that the mean spacing jis 1
two coupled maps, see text. LE spacingsA of different systemgStandard and Bernoulli maps

with average coupling parametep=10"°, lkeda maps withs
where J(t) is the Jacobian of the mappir@). Since the =10 *) with different types of couplinguncpd., uncoupled; NN,
standard map is symplectic, it h&®r chaotic trajectories  nearest neighbor coupling; glob., global coupjing
one positive and one negative LE of the same absolute value
that depends on the parameker systems can be achieved by overlapping the light fiedés,
To demonstrate the avoided crossing of LEs, the maps i@.9., the experimentgl7]). Below we describe the LEs in
Eg. (1) are now considered as depending on a common pasoupled Ikeda maps, where the disorder is due to different

rameterre[0,1] as values for the parameteds of the different maps, while the
other parameters were kept constam=@1, b=0.9, c
Ki=K;(7)=K;(0)+ 7[K;(1) = K;(0)]. =0.4). The Ikeda map has one positive and one negative
LE; we follow only the statistics of positive LEs.
The parameter;(0) andK;(1) are random numbers uni-  Now we demonstrate that the consequence of the LE re-

formly distributed in the interval #K;<10. We presentin puylsion is a particular statistics of LE spacings in disordered
Fig. 1 the resglts.of numerical calculations of the LEs of asystems of typ€1). We performed the numerical experiment
particular realization of a systeffEq. (1)] of six nearest- ith different kinds of coupled maps as follows. First, we
neighbor-coupled standard maps. In Figa)1the six posi-  fixed the system siz8l and the expectation valug, of the
tive LEs\; (i=1,...,6) areshown as functions of the com- coupling constant. Then, for each randomly chosen set of
mon parameterr for the cases=0, i.e., without coupling. parametersiwe used uniformly distributed parameteis
As can be expected for independent LEs, many crossings arg[7,10] for standard maps; € [0.2,0.3 for skew Bernoulli
observed. This is no longer the case when a small neareshaps, andi, e[7.5,8.5 for Ikeda mapsand coupling con-
neighbor coupling §=10"°) is introduced, as can be seen stante (exponential distribution with expectation valug
from Fig. 1(b); the crossings are avoided, a behavior that is= 105 for standard and skew Bernoulli maps,= 10" * for
well known for energy levels of quantum-mechanical sys-jkeda maps we determinedN LEs, which correspond tdl
tems. Note, however, a quantitative difference: Since the LES 1 spacingsA, =\, —\,, . These spacings are considered
are calculated from the eigenvalues of a product of randomg N — 1 samples of a random distributidfor the standard
matrices, the avoided crossing is already observed for exyng keda maps only the positive LEs are considerBer-
treme_ly small(i_n absolute valugoff-diagonal elements of forming calculations for many sets of parameties(or a; ,
the single matrices. _ _ _ ord;) ande, we obtain a representative statistics for the LE
A theoretical explanation for this strong repulsion of LEs spacings, see Fig. 2 where the distribution functibg(z)
will be discussed below, here we want to describe furtherzProb(A,<z) is shown.
numerical experiments showing that the picture above is Examining Fig. 2 we see that the distribution of spacings
quite universal. A qualitatively similar pattern of avoided ¢ coupled maps has a very strong depletion for smatiot
crossings has also been obtained for a lattice of standar&Hy compared to the Poisson distributidn~z (which oc-
maps with global coupling. We have observed it also for,curs in the absence of couplingut also compared to the
dissipative systems, e.g., for globally coupled skew Bernoulliyigner distribution for the Gaussian orthogonal ensemble of
maps with parameters € (0,1) defining the location of the .- 4om matrices for whickb ~ 72 [18].

discontinuity. Another dissipative system we studied is the 14 resolve this strong depletion, we present the data in

lkeda map for a complex amplitudg, Fig. 3 in scaled coordinates. The scaling is motivated by our
i theory(see belowand it shows that the distribution function
I . . .
E(t+1)=a+bE(t)exd ic— , is exponentially small for small spacingspb,(z)~exp
( ) ® p( 1+|E(t)|2) (—z%). Note also that although the distribution functions are

qualitatively similar for different systems, they do not col-
which describes a chaotic regime of light propagation in dapse on a single curve. This is an indication for nonuniver-
ring cavity with a nonlinear elementl6]. Coupling such sality of the LE spacing distribution.
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FIG. 3. Cumulative distribution functions of Fig. 2 in scaled  FIG. 4. Dependence of the LE differendeon the difference
coordinates, cf. Eq6). SA between the “bare” LEs for two coupled standard maps with

coupling parameters=10"5. Comparison of numerical results

(circles with the analytical expressiofEg. (3), solid line, with

numerically calculated values far?] and the hyperbolic approxi-
As is clear from Eq(2), the problem we consider can be mation[Eq. (4), dashed ling¢ The dotted line depicts the LE differ-

formulated as a problem of the random matrix themjth ~ ence without couplingA =|5A|.

the usual modeling of chaotic fluctuations with random

ones. Namely, we are interested in the eigenvalues of infi-crossings are shown as dashed lines in Fig. 1. One can see

nite products of random matriceS, having b(qbenched that the behaVior Of the LEs I’emains at |eaSt qua”tatively the

(time-independentdisorder anddynamic (time-dependent ~ S@me. . S

noise. The quenched randomness comes from the distribu- D@ido[20] has first shown that two coupled identical cha-

tion of the parameters in the disordered ensemble, e.g., frofjliC Systems experience a singular repulsion of the LEs,

— 71 . .
the distribution of parametels; of the standard maps. The . |t|r? el % V\I{hereA IS thte d'gefe”‘;ﬁ bEtween'the LES. and
dynamic noise comes from fluctuations due to chaotic evo> \N€ Coupling parameter. Using the Langevin apprdaef

lution (e.g., in the standard map the local Jacobian depend;g 0(13“?% téhi]ggﬁogﬁ dﬂtl/;trLij:r;f;vsé ?1);\1 r;alencde(:]rtrll f(()jrgr(iavg\gth
on the chaotic variablelsand 6). pprop y

The two limiting cases, when our problem can be reduce 13] (cf. [14]) a general expression fdr that is also valid for

nidentical systems,
to standard ones, are clear. In the case when the quenche8 4

B. Relation to other random matrix problems

disorder is abser(tor_ if we (_:onsider j_ust one realization of Ky (ela?)+ Ky (ela?)
parameters of the interacting chaotic systgmee have a A(l,e,o)=¢ 5 , 3
standard problem of the calculation of LEs for a product of Ki(elo®)

random matrice$7]. Another well-known situation appears

if the dynamic noise is absent, in this case all the matrices ovhere o is the variance of the finite-time LE|

the product are equal and the problem reduces to calculatiort| SA|/20? is proportional to the difference of the “bare”
of the eigenvalues of this matrix. This problem has beeri.€., without coupling LEs A, , of the interacting systems,
widely discussed, recently mainly in the context of quantum@ndK are the modified Bessel functio®1]. Although Eq.
chaos(see, e.g.[18]). For chaotic systems the fluctuations (3) Was obtained in the continuous-time Langevin approxi-
can vanish only in exceptional cases, e.g., for the skew Beflation where the fluctuations of the LEs are modeled with
noulli map this happens for the symmetric situatigs- 1/2 Qauss!an white n0|séth_us discarding all temporal coryela—
only; for the standard map in the chaotic state and for thd!ONS. it very well describes the coupled standard méps.

Ikeda map the fluctuations are always finite. Another Iimiting4) as well as other chaotic systets3,14. Because expres-

case is that of uncoupled systems, here we have a product ﬁpn (3) is rather inconvenient for further analysis, we use a

diagonal matrices with both quenched and dynamic random-yperbOIIC approximation for it,
ness. The LEs simply follow the statistics of the quenched
disorder.

2

) ’ 207 2
A~ (S5A — . 4

(54) +(In(s/(rz)) @
C. Theory

Similar to the case of quantum-mechanical systése®, The first term on the right-hand side corresponds to the limit
e.g.,[19]), the essential qualitative and quantitative charac-<dA —«, while the second term is based on an expansion of
teristics of LE repulsion can be acquired from the consider£q. (3) for SA=0 and smalle/o? [13,14). From Fig. 4 one
ation of two coupled dissipative chaotic systems. We demean see that this approximation is rather good.
onstrate this with the following numerical experiment: we Using Eq.(4) we can show that in a disordered system the
calculate the LEs for two coupled maps of Fig. 1, switchingprobability to observe tiny values oA is exponentially
off the interaction with other systems. The results for twosmall. It is clear that only small values 6\ ande can give
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small spacingf\. If we assume thaA ande are indepen- manifests itself also in the avoided crossing of LEs, consid-
dent random numbers with constant densities near zero, thested as dependent on a parameter. We have demonstrated
the distribution function®,(z)=Prob(A<z) can be ap- that the effects of level repulsion and avoided crossing are

proximated by the integral over the aréqz)={(5A,e): observed for chaotic systems of different natures, Hamil-
(6A)*+[20°/In(e/0?) <7} leading to tonian and dissipative ones. Also the coupling can be of dif-
ferent forms, in particular, qualitatively similar patterns of

q;A(Z)NJ f d(5A)de avoided LE crossings and of the LE spacing distribution

A2) function are observed for global and nearest-neighbor cou-

) plings in a lattice.
=202J'Z exd — 20 d(sA).  (5) Our framework of consideration was motivated by the
~z 2°—(6MN)? analogy to the problem of level statistics in quantum chaos
o o ) _ ~and complex quantum systerf#&2,19,18. Qualitatively, the
Estimating this integral for @°>z gives the exponential penavior of LEs is quite similar to that of energy levels in

depletion at small spacings guantum chaos. The main difference is that for disordered
252 chaotic dynamical systems we have two sources of random-
g . .
¢A(z)~z3/2ex% — _) (6)  ness, one quenched due to the disorder and one dynamic due
z to the chaotic fluctuations. Thus, in contrast to the problem

The numerically calculated cumulative distribution functionsOf the distribution of eigenvalues of random matrices, we
y have the problem of the distribution of eigenvalues of the

are in conformity with this result, as can be seen from Fig. 3 . L
The theoretigal analysis above is, strictly speakingg reproduct of random matrices. There are two limiting cases
. . L . '~ “when these two problems are equivalent. One is the case
stricted to the case of two interacting chaotic systems. NeVWithout coupling, where the LEs remain independent random

ertheless, we expect that it works at least qualitatively for mbers and obey the Poissonian distribution. Another is the

large ensembles as well, because we have seen that the I:‘,Ese of vanishing fluctuations of the local LE® dynamic

r Ision i “ |” event, where only the two chaoti : .
sirk))i Ss?emz \;;\‘/hoggaLE: aere ’closg t% ?eagh o?her ng i?\(;oﬁ/ rgndomness here we have one random matrix whose eigen-
Y lues give the LEs.

(cf. Fig. 2).
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